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Flocking control problem of mobile robots under environment with unknown obstacles is addressed in this paper. Based on
the simulated annealing algorithm, a flocking behaviour for mobile robots is achieved which converges to alignment while
avoiding obstacles. Potential functions are designed to evaluate the positional relationship between robots and obstacles.
Unlike the existing analytical method, simulated annealing algorithm is utilized to search the quasi-optimal position of
robots in order to reduce the potential functions. Motion control law is designed to drive the robot move to the desired
position at each sampling period. Experiments are implemented, and the results illustrate the effectiveness of the proposed
flocking control method.

1. Introduction

Flocking problems are studied and applied in many re-
search fields, such as self-organized mobile sensor net-
works in [1], cooperative unmanned aerial vehicles
(UAVs) in [2–5], and military reconnaissance in [6].
Research of flocking behaviour stems from the coordi-
nation phenomena in nature, from swarming of bacteria,
biochemical cellular networks, up to flocking of birds,
schooling of fish, and herds of land animals [7]. Reynolds
proposed a computer model of coordinated animal mo-
tion named “boids” in [8] and defined three concepts to
describe the behaviours of boids:

(1) Collision avoidance: avoid collisions with nearby
flockmates

(2) Velocity matching: attempt to match velocity with
nearby flockmates

(3) Flock centering: attempt to stay close to nearby
flockmates

)ese behaviours are seen in astonishing amount of
coordinated systems, which exhibit unbelievable efficient

and robust coordination [9, 10]. )ese inspired a lot of
work in statistical physics and control theories about
stability. Flocking behaviour has been addressed in the
context of nonequilibrium phenomena in many degree-
of-freedom dynamical systems and self-organization in
systems of self-propelled particles [7, 11, 12].

Booming-related work has been done worldwide in the
last decades. Some works focus on the dynamic model of
mobile robots [13]. In [14], a method based on the in-
trinsic properties of the Euclidean plane is proposed for
the calculation of the moving mechanism on a trajectory.
In [15], a direct analytical method for solving the linear
transformation of the characteristic equation for indus-
trial robots is proposed. A model predictive flocking
control scheme for second-order multiagent systems with
input constraints is designed in [16]. In [17], a dynamic
pinning control algorithm (DPCA) is developed to gen-
erate stable flocking motion for all the agents without the
assumption of connectivity or initial connectivity of the
network. In [18], a distributed control protocol with in-
dividual local information is proposed for the second-
order multiagent system with interference. )e problem of
flocking and velocity alignment in a group of kinematic
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nonholonomic agents in 2 and 3 dimensions is addressed
in [19]. A geodesic control law that minimizes a mis-
alignment potential and results in velocity alignment and
flocking is proposed. In [20], the flocking of multiple
agents which have significant inertias and evolve on a
balanced information graph is studied. Passive decom-
position method is used to incorporate this inertial effect
which can cause unstable group behaviour. )e proposed
flocking control law is proven to be stable and can ensure
that the internal group shape is exponentially stabilized to
a desired state.

In recent years, the flocking problem of mobile robots
has become an attractive subject in the research field of the
multiagent system and cooperative robots. In [21], the
cooperative motion coordination of leader-follower for-
mations of nonholonomic mobile robots under visibility
and communication constraints in known polygonal ob-
stacle environments is studied. Each robot can take care of
converging to a desired configuration while maintaining
visibility with its target. Flocking with obstacle avoidance is
an emerging research interest in recent years [22–26]. A
new distributed coordination algorithm with Voronoi
partitions for multivehicle systems is presented in [22],
which results not only in obstacle avoidance and motion to
the goal but also in a desirable geographical distribution of
the vehicles. A flocking algorithm in the presence of ar-
bitrary shape obstacle avoidance is presented in [23] both
in the 2D space and 3D space. In [27], learning-based
model predictive control approach is applied to the
flocking problem of UAVs in the presence of uncertainties
and obstacles. A distributed framework that ensures reli-
ably collision-free behaviours in large-scale multirobot
systems with switching interaction topologies is presented
in [28].

In practical applications, such as formulation of the
mobile robot or surface vessels, the agent model is under-
actuated, and the kinematic motion is constricted with
nonholonomic constraints. In our research project, Ami-
goBot is adopted as an α − agent in the flocking control
problem. )e kinematic model of AmigoBot is a kind of
nonholonomic system in which the number of control in-
puts is less than the degree of freedom and cannot be
transformed into a second-order linear system. It is nec-
essary to redesign the control algorithms for the flocking of
AmigoBots.

In this paper, a control method for the flocking problem
of mobile robots is proposed. Simulated annealing (SA)
algorithm is used to design a simple behaviour for each
robot while flocking can be self-established. SA algorithm is
a probabilistic technique for approximating the global
optimum of a given function. Specifically, it is a meta-
heuristic to approximate global optimization in a large
search space for an optimization problem. It is often used
when the search space is discrete (e.g., the traveling
salesman problem). For problems where finding an ap-
proximate global optimum is more important than finding
a precise local optimum in a fixed amount of time, sim-
ulated annealing may be preferable to alternatives such as
gradient descent.

)e paper is organized as follows. Section 2 gives the
kinematic model of AmigoBot and the problem formulation.
Design process of the flocking control law is presented in
Section 3. Simulation is implemented to illustrate the ef-
fectiveness of the proposed control law, and results are
shown in Section 4. Finally, the conclusions are made in
Section 5.

2. Problem Formulation

2.1.Model ofFlockingAgents. )efirst model which is widely
considered as a flocking agent is constructed in [12], which
was proposed by Vicsek et al. to interpret the flocking
phenomenon such as clustering and convection:

xi(t + 1) � xi(t) + vi(t)Δt,

θ(t + 1) � 〈θ(t)〉r + Δθ,
(1)

where xi is the position of particle i on the plane, vi is the
velocity with an absolute value v and an angle given by
θ(t + 1), i � 1, 2, · · · , n, 〈θ(t)〉r is the average direction of the
particles in the neighbourhood of particle i, and Δθ is the
random noise.

From the perspective of theoretical research, the dy-
namics of agents in flocking is also often modelled as a
second-order linear system [29]:

_xi � vi, _vi � ui, i � 1, 2, . . . , n, (2)

where xi, vi, and ui are the position, velocity, and control
force, respectively.

)e other second-order linear system of the flocking
agent is proposed in [30, 31].)e agents moving on the plane
are modelled with the following dynamics:

_ri � vi, _vi � ui, i � 1, 2, . . . , n, (3)

where ri � (xi, yi)
T is the position of agent i, vi � ( _xi, _yi)

T is
its velocity, and ui � (ux, uy)T is its control inputs. )e
heading angle of agent i is defined with θi � arctan( _yi, _xi).

2.2. KinematicModel of theMobile Robot. Different from the
agent models proposed above which are treated with the
linear system, the kinematic model of the mobile robot is
muchmore complex. As shown in Figure 1, the mobile robot
is controlled only by the velocities of two drive wheels.
Assuming that there exists no slipping motion between the
wheels and the ground, the dynamics of AmigoBot can be
modelled as

_xi � vi cos θi,

_yi � vi sin θi,

θ
.

i � ωi,

(4)

where vi and ωi are the linear and angular velocity, re-
spectively, (xi, yi) is the position of AmigoBot in Cartesian
coordinates, and θi is the orientation angle of the
AmigoBot.
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Unlike the models of (1)–(3), mobile robot like AmigoBot
is usually considered as a nonholonomic system due to the fact
that the system has less dimension of control inputs than its
degrees of freedom. For AmigoBot, it has 3 degrees of freedom,
i.e., the lateral and longitudinal motion on the horizontal plane
and rotatory motion along the axis vertical to the horizontal
plane but with only two control inputs.

For the differential wheel drive mobile robot, it has vi �

(vRi + vLi)/2 and ωi � (vRi − vLi)/L. vRi and vLi are the ve-
locities of the right and left wheel, respectively, and L is the
distance between the two wheels as described in Figure 1.
Constrained by limitations on the control inputs, the
existing flocking laws or algorithms are not suited for the
flocking control problem of mobile robots.

3. Design of the Flocking Control Law

3.1. Potential Function ofCoordination. Each mobile robot is
considered as an α − agent. Define the position vector of the
ith AmigoBot with ri � [xi, yi]

T. )e relative positions be-
tween the ith and jth AmigoBots are defined with
rij � ri − rj. )e distance between these two AmigoBots is
then given with ‖rij‖. A potential function Vij is defined to
evaluate the relative positions between any pair of neigh-
bouring AmigoBots as follows:

Vij rij

�����

�����􏼒 􏼓 �
d2

r

rij

�����

�����
2 + log rij

�����

�����
2

􏼒 􏼓 + e
rij

����
����− dr􏼐 􏼑

2

, (5)

where dr > 0 is a design parameter. )e curve of function Vij

is shown in Figure 2. dr determines the desired distance
between the agents. When ‖rij‖ � dr, it has
minVij(‖rij‖) � 2 + log(d2

r). Unlike the potential function
proposed in [31], also shown in Figure 2 as traditional Vij,
the third term in (5) is helpful to get a flexible behaviour such
as split and squeezing maneuver in an environment with
obstacles.

)e potential function of AmigoBot i is then defined
with the sum of all Vij:

V
i
α � 􏽘

j∈A
Vij rij

�����

�����􏼒 􏼓, (6)

whereA is the set that includes all other AmigoBots that the
ith AmigoBot can detect with sensors.

3.2. Potential Function of Obstacle Avoidance. Obstacles can
be detected by AmigoBot with sonar sensors in an unknown
environment. Define the position of the obstacle with
Ok � [xk, yk]T. To keep a safe distance from the obstacle Ok,
it is assumed that the obstacle Ok has a circular boundary
with radius ds. β − agent is then defined with the projection
of the α − agent on the boundary of obstacle Ok [32].

Define the projection of the position ri of robot i onOk as

qik � arg min
qk∈Ωk

ri − qk

����
����, (7)

where Ωk is the boundary of Ok.
Define the distance between robot i and its projection qik

on the obstacle Ok with ‖rik‖ � ‖ri − qik‖. A potential
function Vik is designed to evaluate the relative position
between robot i and obstacle Ok as follows:

Vik rik

����
����􏼐 􏼑 �

1
rik

����
����

−
1
ds

􏼠 􏼡

2

, rik

����
����<ds,

0, rik

����
����≥ds.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(8)

Define
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Figure 1: Mobile robot with sonar sensors. (a) AmigoBot. (b) Model of AmigoBot.
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Figure 2: Potential function Vij.
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V
i
β � 􏽘

k∈Oi

Vik rik

����
����􏼐 􏼑,

(9)

where Oi is the set of obstacles detected by robot i.

3.3. Flocking Behaviour via Random Search Algorithm.
With the aforementioned designed potential functions Vi

α
and Vi

β, the flocking control problem of the mobile robot is
considered as an optimization problem in this paper. In [33],
Cheng et al. designed a flocking control law that can drive
the agents to evolve into the flock centering state. Motion
control laws are proposed to synchronize the velocities and
orientation angles via the Newton method in an environ-
ment without obstacles.

For the flocking problem of the mobile robot in a
complex environment with unknown obstacles, define the
total potential function for robot i as

Vi � V
i
α + V

i
β. (10)

Obviously, if all the robots move towards the direction of
the gradient descent of Vi at each sample period, the robots
will keep a desired distance among each other finally:

θ ∗i � arg min
θi∈Θi

Vi, ∀tk, (11)

where Θi is the orientation space of robot i, tk is the sample
period, θ∗i is the optimal orientation angle which has the
maximal extent of the gradient descent of Vi at tk. Due to
that the space Θi is continuous, methods based on the
gradient descent are generally adopted [30, 33]. Methods
based on the random search algorithm provide another
dependable solution. In this paper, SA algorithm is applied
to searching of the minimal solution of Vi which is designed
to regulate the flocking state.

Compared to other approximation methods, such as
the Newton method, gradient descent method, and

Levenberg–Marquardt method, SA can avoid being trapped
in the local minimal in early iterations and is able to explore
globally for better solutions in finite iterations [34]. SA is a
method for solving unconstrained and bound-constrained
optimization problems. )e method models the physical
process of heating a material and then slowly lowering the
temperature to decrease defects, thus minimizing the system
energy [35, 36]. )ere is an essential similarity between the
flocking control problem and the simulated annealing
course. Both of them aim to explore the optimal solution that
has minimal energy or desired homogeneity.

)e flocking control problem of mobile robots is
considered as an approximation of the optimal solution of
each Vi. With full information of all the other robots and
the obstacles detected by sonar sensors, each robot tries to
keep a quasi-optimal distance from each other in the
motion while avoiding the obstacles. Firstly, the optimal
position r∗i with minimal Vi is approximated via the SA
algorithm. )en, the optimal orientation angle θ∗i is cal-
culated with r∗i . Finally, a motion control law is designed to
drive the robot move to the optimal position r∗i at each
sampling period tk.

)e pseudo-code of the random search method of r∗i via
the SA algorithm is shown in Algorithm 1, where
r∗i � [x∗i , y∗i ]T is the desired position vector for the ith

AmigoBot. Define the change of energy level with

ΔE � Vi rnew( 􏼁 − Vi 􏽥ri( 􏼁. (12)

)e initial position 􏽥ri in Neighbor(􏽥ri) is not generated
randomly but given with ri. Also, the function Neighbor(􏽥ri)

is defined with

rnew � 􏽥ri + Step∗ [Rand( ),Rand( )]
T
, (13)

where Step is a parameter decided by the maximal velocity of
the robot and Rand is a random function which can generate
a value randomly in the range between 0 and 1.

Input: objective functionVi and ri, i � 1, 2, . . . , n

Output: quasi − optimal solution⟶ r∗i
(1) for robot i do
(2) Initialize SA (T, Tmin, α and N)
(3) rbest⟵ ri

(4) 􏽥ri⟵ ri

(5) While T<Tmin do
(6) for i � 1: N do
(7) rnew⟵Neighbor(􏽥ri)

(8) if ΔE< 0 then
(9) 􏽥ri⟵ rnew
(10) rbest⟵ 􏽥ri

else
(11) if exp(−ΔE/T)>Rand then
(12) 􏽥ri⟵ rnew
(13) T⟵ αT

(14) r∗i ⟵ rbest
(15) return r∗i

ALGORITHM 1: Flocking behaviour search.
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Obviously, if r∗i is well tracked, Vi would converge to the
minimal value, and the distance between the agents would
also converge to a constant value, which in fact is determined
by dr. )at is, the flocking centering state can be guaranteed.

Once the quasi-optimal position r∗i is achieved, the
optimal orientation angle can be calculated with
θ∗i � arctan((y∗i − yi)/(x∗i − xi)).

Define θ∗i � arctan((y∗i − yi)/(x∗i − xi)), and it has
zθ ∗i
zxi

� −
yi − y∗i

xi − x∗i( 􏼁
2

+ yi − y∗i( 􏼁
2,

zθ ∗i
zyi

�
xi − x∗i

xi − x∗i( 􏼁
2

+ yi − y∗i( 􏼁
2.

(14)

Define θe � θi − θ∗i , and design the control law for ωi

with

ωi � −kw θi − θ ∗i( 􏼁 + vi

zθ ∗i
zxi

cos θ∗i + vi

zθ ∗i
zyi

sin θ∗i , (15)

where kw > 0 is a design parameter.With the control inputωi

in (15), it has

θe

.

� −kw θi − θ∗i( 􏼁 � −kwθe. (16)

Define a candidate function Vθe
� (1/2)θ2e ; then, it has

_Vθe
� −kwθ

2
e ≤ 0. With Lyapunov stability and LaSalle’s in-

variant principle, it can be proven that the equilibrium θe �

0 is asymptotically stable. )at is, with the control law for ωi

in (15), the ith AmigoBot can be steered towards the desired
position r∗i .

Define δri � [xi − x∗i , yi − y∗i ]T. Let

vi �
1

N − 1
􏽘
j∈A

vj + kv δri

����
����Vi, (17)

Table 1: Parameters in the flocking control method.

Variables Value

Potential function dr 1000mm
ds 1000mm

Motion control kw 0.0001
kv 0.003

SA algorithm

T 100
Tmin 0.001
α 0.5
N 20

Step 100

(a) (b) (c) (d) (e)

(f ) (g) (h) (i)

Figure 3: Experiment inMobileSim. (a) tk � 0. (b) tk � 50. (c) tk � 80. (d) tk � 110. (e) tk � 120. (f ) tk � 150. (g) tk � 170. (h) tk � 190. (i) tk � 270.
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where vr is the linear speed of the c − agent or the speed
required for the flocking motion and kv > 0 is a design
parameter.

4. Simulation Results

)e effectiveness of the proposed flocking control method is
illustrated by experiments in MobileSim. MobileSim is
software for simulating mobile robots and their environ-
ments, for debugging and experimentation with ARIA or
other software that support mobile robot platforms. In this
experiment, five AmigoBots are controlled to form a flocking
centering state while avoiding the obstacles. )e robots are
connected by software with TCP ports from 8101 to 8105.
Software is coded in VS2008. )e data in the control process
are stored in a text file at each sampling time, and the results
are depicted in MATLAB figures.

)e initial positions of the five AmigoBots are set with
(0, 2000mm), (0, 1000mm), (0, 0), (0, −1000mm), and
(0, −2000mm). All the headings of the AmigoBots are set
with 0°. Velocities of robots are set with 20mm/sec at the
beginning.

)e parameters in the method proposed above are
designed as given in Table 1.

)e initial and some intermediate processes of robots are
shown in Figure 3. Obstacles are plotted with squares,
hexagons, and triangles. With sonar sensors, the robot can
detect the obstacles at each sampling period (500ms). )e
positions of the other α-agents are shared at a period of 1 sec.
From Figures 3(c)–3(f), it can be seen that the robots smartly
avoid the obstacles. As shown in Figures 3(g)–3(i), all the
robots attempt to assemble with a desired distance after
passing through the obstacles, which brings out a flocking
center state.

)e detailed traces of the five AmigoBots during the
flocking process are depicted in Figure 4. It proves that the

designed potential function of Vi
α and Vi

β can regulate the
relative position between robots and obstacles effectively.
)e robots keep a safe distance from obstacles while across
the gap and a desired distance from each other in the ob-
stacle-free space. Connection graph of the robots marked
with the red circle is shown in Figure 5, which illustrates the
evolution of the flocking center state during the whole
process. It can be seen that the five AmigoBots are driven to a
stable pattern of geometry. Each AmigoBot has a stable
neighbouring relationship and keeps a stabilized motion.

For the 10 connection graphs in Figure 5, define Vαk as
the average of the 5 potential function Vi

α for each graph. It
has Vαk � [1605.2, 57.4, 88.9, 6.2, 148.0, 5.0, 3.9, 3.9, 3.6, 6.2].
)e potential function Vi

α reduces greatly from the begin-
ning and increases highly while the robots go across the
obstacles and then reduces to a low value when robots are in
the obstacle-free space.
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)e responses of potential functions Vi
α and Vi

β are
depicted in Figures 6 and 7, which illustrate how Vi

α and Vi
β

affect the behaviour of the robot. It can be seen that when the
distances between robots are farther than the desired dis-
tance dr or the distances to the obstacles are nearer than the
safe distance ds, Vi

α and Vi
β have large values, which impel

the robot to move to a desired position to reduce them with
the SA algorithm. It has t0, Vi

α(t0) � [7932.5,

658.0, 139.0, 664.0, 7931.7](i � 1, 2, 3, 4, 5) at the starting
time t0, and Vi

α(tk) � [16.57, 12.38, 16.82, 20.80, 20.63] at
the ending time tk � 350. All the robots have approximated
the minimal values of Vi

α.

Figures 8 and 9 show the flocking behaviour of align-
ment. )e orientation angles and velocities of five robots
almost converge to the same value.

5. Conclusion

In this paper, the flocking behaviour of the mobile robot in
an unknown environment with obstacles is designed via the
heuristic search algorithm. With the potential functions
defined for the α − agent and β − agent, the mobile robot can
acquire the quasi-optimal direction with the SA algorithm in
finite search times. Control laws for vi and ωi are also
designed. )e system of mobile robots acts out separation
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and alignment behaviours obviously. Moreover, the robots
can avoid obstacles, detected with sonar sensors, by a safe
distance. Future work will address the issue of flocking
control of mobile robots in the field environment with this
proposed method.
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